Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 342
4.
Front Cell Dev Biol ; 12: 1353860, 2024.
Article En | MEDLINE | ID: mdl-38601081

Neuroblastoma (NB) is the most frequent solid tumor in pediatric cases, contributing to around 15% of childhood cancer-related deaths. The wide-ranging genetic, morphological, and clinical diversity within NB complicates the success of current treatment methods. Acquiring an in-depth understanding of genetic alterations implicated in the development of NB is essential for creating safer and more efficient therapies for this severe condition. Several molecular signatures are being studied as potential targets for developing new treatments for NB patients. In this article, we have examined the molecular factors and genetic irregularities, including those within insulin gene enhancer binding protein 1 (ISL1), dihydropyrimidinase-like 3 (DPYSL3), receptor tyrosine kinase-like orphan receptor 1 (ROR1) and murine double minute 2-tumor protein 53 (MDM2-P53) that play an essential role in the development of NB. A thorough summary of the molecular targeted treatments currently being studied in pre-clinical and clinical trials has been described. Recent studies of immunotherapeutic agents used in NB are also studied in this article. Moreover, we explore potential future directions to discover new targets and treatments to enhance existing therapies and ultimately improve treatment outcomes and survival rates for NB patients.

5.
Ageing Res Rev ; 96: 102289, 2024 Apr.
Article En | MEDLINE | ID: mdl-38582379

Alzheimer's disease (AD) is the most common type of dementia accounting for 90% of cases; however, frontotemporal dementia, vascular dementia, etc. prevails only in a minority of populations. The term dementia is defined as loss of memory which further takes several other categories of memories like working memory, spatial memory, fear memory, and long-term, and short-term memory into consideration. In this review, these memories have critically been elaborated based on context, duration, events, appearance, intensity, etc. The most important part and purpose of the review is the various pathological cascades as well as molecular levels of targets of AD, which have extracellular amyloid plaques and intracellular hyperphosphorylated tau protein as major disease hallmarks. There is another phenomenon that either leads to or arises from the above-mentioned hallmarks, such as oxidative stress, mitochondrial dysfunction, neuroinflammation, cholinergic dysfunction, and insulin resistance. Several potential drugs like antioxidants, anti-inflammatory drugs, acetylcholinesterase inhibitors, insulin mimetics or sensitizers, etc. studied in various previous preclinical or clinical reports were put as having the capacity to act on these pathological targets. Additionally, agents directly or indirectly targeting amyloid and tau were also discussed. This could be further investigated in future research.


Alzheimer Disease , Humans , Alzheimer Disease/metabolism , Acetylcholinesterase , Amyloid beta-Peptides/metabolism
6.
Expert Opin Drug Metab Toxicol ; 20(4): 181-195, 2024 Apr.
Article En | MEDLINE | ID: mdl-38480460

INTRODUCTION: Pharmacokinetic parameters assessment is a critical aspect of drug discovery and development, yet challenges persist due to limited training data. Despite advancements in machine learning and in-silico predictions, scarcity of data hampers accurate prediction of drug candidates' pharmacokinetic properties. AREAS COVERED: The study highlights current developments in human pharmacokinetic prediction, talks about attempts to apply synthetic approaches for molecular design, and searches several databases, including Scopus, PubMed, Web of Science, and Google Scholar. The article stresses importance of rigorous analysis of machine learning model performance in assessing progress and explores molecular modeling (MM) techniques, descriptors, and mathematical approaches. Transitioning to clinical drug development, article highlights AI (Artificial Intelligence) based computer models optimizing trial design, patient selection, dosing strategies, and biomarker identification. In-silico models, including molecular interactomes and virtual patients, predict drug performance across diverse profiles, underlining the need to align model results with clinical studies for reliability. Specialized training for human specialists in navigating predictive models is deemed critical. Pharmacogenomics, integral to personalized medicine, utilizes predictive modeling to anticipate patient responses, contributing to more efficient healthcare system. Challenges in realizing potential of predictive modeling, including ethical considerations and data privacy concerns, are acknowledged. EXPERT OPINION: AI models are crucial in drug development, optimizing trials, patient selection, dosing, and biomarker identification and hold promise for streamlining clinical investigations.


Artificial Intelligence , Computer Simulation , Drug Development , Machine Learning , Pharmacokinetics , Precision Medicine , Humans , Drug Design , Drug Development/methods , Drug Discovery/methods , Models, Biological , Models, Molecular , Pharmaceutical Preparations/metabolism , Pharmaceutical Preparations/administration & dosage , Pharmacogenetics , Precision Medicine/methods , Reproducibility of Results
7.
Phytomedicine ; 127: 155466, 2024 May.
Article En | MEDLINE | ID: mdl-38461764

BACKGROUND: The heme oxygenase (HO) system plays a significant role in neuroprotection and reduction of neuroinflammation and neurodegeneration. The system, via isoforms HO-1 and HO-2, regulates cellular redox balance. HO-1, an antioxidant defense enzyme, is highlighted due to its association with depression, characterized by heightened neuroinflammation and impaired oxidative stress responses. METHODOLOGY: We observed the pathophysiology of HO-1 and phytochemicals as its modulator. We explored Science Direct, Scopus, and PubMed for a comprehensive literature review. Bibliometric and temporal trend analysis were done using VOSviewer. RESULTS: Several phytochemicals can potentially alleviate neuroinflammation and oxidative stress-induced depressive symptoms. These effects result from inhibiting the MAPK and NK-κB pathways - both implicated in the overproduction of pro-inflammatory factors - and from the upregulation of HO-1 expression mediated by Nrf2. Bibliometric and temporal trend analysis further validates these associations. CONCLUSION: In summary, our findings suggest that antidepressant agents can mitigate neuroinflammation and depressive disorder pathogenesis via the upregulation of HO-1 expression. These agents suppress pro-inflammatory mediators and depressive-like symptoms, demonstrating that HO-1 plays a significant role in the neuroinflammatory process and the development of depression.


Heme Oxygenase-1 , Neuroinflammatory Diseases , Humans , Heme Oxygenase-1/metabolism , Depression/drug therapy , Heme Oxygenase (Decyclizing)/metabolism , Antioxidants/pharmacology , Oxidative Stress , NF-E2-Related Factor 2/metabolism
8.
Curr Pharm Des ; 2024 Mar 12.
Article En | MEDLINE | ID: mdl-38482626

Neurodegenerative disorders are distinguished by the progressive loss of anatomically or physiologically relevant neural systems. Atypical mitochondrial morphology and metabolic malfunction are found in many neurodegenerative disorders. Alteration in mitochondrial function can occur as a result of aberrant mitochondrial DNA, altered nuclear enzymes that interact with mitochondria actively or passively, or due to unexplained reasons. Mitochondria are intimately linked to the Endoplasmic reticulum (ER), and ER-mitochondrial communication governs several of the physiological functions and procedures that are disrupted in neurodegenerative disorders. Numerous researchers have associated these disorders with ER-mitochondrial interaction disturbance. In addition, aberrant mitochondrial DNA mutation and increased ROS production resulting in ionic imbalance and leading to functional and structural alterations in the brain as well as cellular damage may have an essential role in disease progression via mitochondrial malfunction. In this review, we explored the evidence highlighting the role of mitochondrial alterations in neurodegenerative pathways in most serious ailments, including Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD).

10.
J Biomol Struct Dyn ; : 1-11, 2024 Feb 28.
Article En | MEDLINE | ID: mdl-38415708

Kirsten rat sarcoma (KRAS) stands out as the most prevalent mutated oncogene, playing a crucial role in the initiation and progression of various cancer types, including colorectal, lung and pancreatic cancer. The oncogenic modifications of KRAS are intricately linked to tumor development and are identified in 22% of cancer patients. This has spurred the necessity to explore inhibition mechanisms, with the aim of investigating and repurposing existing drugs for diagnosing cancers dependent on KRAS G12C In this investigation, 26 nucleoside-based drugs were collected from literature to assess their effectiveness against KRAS G12C. The study incorporates in-silico molecular simulations and molecular docking examinations of these nucleoside-derived drugs with the KRAS G12C protein using Protein Data Bank (PDB) ID: 5V71. The docking outcomes indicated that two drugs, Azacitidine and Ribavirin, exhibited substantial binding affinities of -8.7 and -8.3 kcal/mol, respectively. These drugs demonstrated stability in binding to the active site of the protein during simulation studies. Root mean square deviation (RMSD) analyses indicated that the complexes closely adhered to an equilibrium RMSD value ranging from 0.17 to 0.2 nm. Additionally, % occupancies, bond angles and the length of hydrogen bonds were calculated. These findings suggest that Azacitidine and Ribavirin may potentially serve as candidates for repurposing in individuals with KRAS-dependent cancers.Communicated by Ramaswamy H. Sarma.

11.
Pharmaceuticals (Basel) ; 17(2)2024 Feb 14.
Article En | MEDLINE | ID: mdl-38399463

Disease-modifying anti-rheumatic drugs (DMARDs) is a class of anti-rheumatic medicines that are frequently prescribed to patients suffering from rheumatoid arthritis (RA). Methotrexate, sulfasalazine, hydroxychloroquine, and azathioprine are examples of non-biologic DMARDs that are being used for alleviating pain and preventing disease progression. Biologic DMARDs (bDMARDs) like infliximab, rituximab, etanercept, adalimumab, tocilizumab, certolizumab pegol, and abatacept have greater effectiveness with fewer adverse effects in comparison to non-biologic DMARDs. This review article delineates the classification of DMARDs and their characteristic attributes. The poor aqueous solubility or permeability causes the limited oral bioavailability of synthetic DMARDs, while the high molecular weights along with the bulky structures of bDMARDs have posed few obstacles in their drug delivery and need to be addressed through the development of nanoformulations like cubosomes, nanospheres, nanoemulsions, solid lipid nanoparticles, nanomicelles, liposome, niosomes, and nanostructured lipid carrier. The main focus of this review article is to highlight the potential role of nanotechnology in the drug delivery of DMARDs for increasing solubility, dissolution, and bioavailability for the improved management of RA. This article also focusses on the different aspects of nanoparticles like their applications in biologics, biocompatibility, body clearance, scalability, drug loading, and stability issues.

12.
Can J Physiol Pharmacol ; 102(5): 305-317, 2024 May 01.
Article En | MEDLINE | ID: mdl-38334084

Mostly, cardiovascular diseases are blamed for casualties in rheumatoid arthritis (RA) patients. Customarily, dyslipidemia is probably the most prevalent underlying cause of untimely demise in people suffering from RA as it hastens the expansion of atherosclerosis. The engagement of inflammatory cytokines like tumor necrosis factor-α (TNF-α), interleukin-1 (IL-1), interleukin-6 (IL-6), etc., is crucial in the progression and proliferation of both RA and abnormal lipid parameters. Thus, lipid abnormalities should be monitored frequently in patients with both primary and advanced RA stages. An advanced lipid profile examination, i.e., direct role of apolipoproteins associated with various lipid molecules is a more dependable approach for better understanding of the disease and selecting suitable therapeutic targets. Therefore, studying their apolipoproteins is more relevant than assessing RA patients' altered lipid profile levels. Among the various apolipoprotein classes, Apo A1 and Apo B are primarily being focused. In addition, it also addresses how calculating Apo B:Apo A1 ratio can aid in analyzing the disease's risk. The marketed therapies available to control lipid abnormalities are associated with many other risk factors. Hence, directly targeting Apo A1 and Apo B would provide a better and safer option.


Apolipoproteins , Arthritis, Rheumatoid , Cardiovascular Diseases , Heart Disease Risk Factors , Humans , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/blood , Cardiovascular Diseases/prevention & control , Cardiovascular Diseases/etiology , Apolipoproteins/blood , Animals , Apolipoprotein A-I , Apolipoproteins B/blood , Apolipoproteins B/metabolism , Dyslipidemias/drug therapy , Dyslipidemias/blood , Dyslipidemias/metabolism
13.
Diagnostics (Basel) ; 14(2)2024 Jan 08.
Article En | MEDLINE | ID: mdl-38248016

To develop diagnostic imaging approaches, this paper emphasizes the transformational potential of merging geophysics with health sciences. Diagnostic imaging technology improvements have transformed the health sciences by enabling earlier and more precise disease identification, individualized therapy, and improved patient care. This review article examines the connection between geophysics and diagnostic imaging in the field of health sciences. Geophysics, which is typically used to explore Earth's subsurface, has provided new uses of its methodology in the medical field, providing innovative solutions to pressing medical problems. The article examines the different geophysical techniques like electrical imaging, seismic imaging, and geophysics and their corresponding imaging techniques used in health sciences like tomography, magnetic resonance imaging, ultrasound imaging, etc. The examination includes the description, similarities, differences, and challenges associated with these techniques and how modified geophysical techniques can be used in imaging methods in health sciences. Examining the progression of each method from geophysics to medical imaging and its contributions to illness diagnosis, treatment planning, and monitoring are highlighted. Also, the utilization of geophysical data analysis techniques like signal processing and inversion techniques in image processing in health sciences has been briefly explained, along with different mathematical and computational tools in geophysics and how they can be implemented for image processing in health sciences. The key findings include the development of machine learning and artificial intelligence in geophysics-driven medical imaging, demonstrating the revolutionary effects of data-driven methods on precision, speed, and predictive modeling.

14.
Cell Signal ; 113: 110932, 2024 01.
Article En | MEDLINE | ID: mdl-37866667

Lung cancer's enduring global significance necessitates ongoing advancements in diagnostics and therapeutics. Recent spotlight on proteomic and genetic biomarker research offers a promising avenue for understanding lung cancer biology and guiding treatments. This review elucidates genetic and proteomic lung cancer biomarker progress and their treatment implications. Technological strides in mass spectrometry-based proteomics and next-generation sequencing enable pinpointing of genetic abnormalities and abnormal protein expressions, furnishing vital data for precise diagnosis, patient classification, and customized treatments. Biomarker-driven personalized medicine yields substantial treatment improvements, elevating survival rates and minimizing adverse effects. Integrating omics data (genomics, proteomics, etc.) enhances understanding of lung cancer's intricate biological milieu, identifying novel treatment targets and biomarkers, fostering precision medicine. Liquid biopsies, non-invasive tools for real-time treatment monitoring and early resistance detection, gain popularity, promising enhanced management and personalized therapy. Despite advancements, biomarker repeatability and validation challenges persist, necessitating interdisciplinary efforts and large-scale clinical trials. Integrating artificial intelligence and machine learning aids analyzing vast omics datasets and predicting treatment responses. Single-cell omics reveal cellular connections and intratumoral heterogeneity, valuable for combination treatments. Biomarkers enable accurate diagnosis, tailored medicines, and treatment response tracking, significantly impacting personalized lung cancer care. This approach spurs patient-centered trials, empowering active patient engagement. Lung cancer proteomic and genetic biomarkers illuminate disease biology and treatment prospects. Progressing towards individualized efficient therapies is imminent, alleviating lung cancer's burden through ongoing research, omics integration, and technological strides.


Lung Neoplasms , Proteomics , Humans , Lung Neoplasms/genetics , Lung Neoplasms/therapy , Artificial Intelligence , Genomics , Biomarkers, Tumor/genetics
15.
Am J Transl Res ; 15(11): 6321-6341, 2023.
Article En | MEDLINE | ID: mdl-38074830

Reactive oxygen species (ROS) play a crucial role in cell survival regulation, and its low levels may act as indicators to encourage cellular proliferation. In contrast, elevated levels of ROS may lead to apoptosis. Stability between generating and eliminating ROS allows the retention of effective functioning of redox-sensitive signaling proteins under physiologic conditions. Cells typically maintain redox homeostasis to guarantee appropriate responses to internal and external stimuli. However, oxidative stress occurs when the oxidation product level exceeds the number of standard antioxidant systems. ROS can cause harm to all types of hepatic cells, including endothelial cells, hepatocytes, Kupffer cells, and stellate cells. High levels of ROS may lead to tissue edema, ischemia, fibrosis, cell death, or malignant transformation and may eventually lead to complete tissue damage. Antioxidants in our body exist in a homeostatic balance with other enzymes involved in the repair of cellular functions in addition to the non-enzymatic molecules such as urate, bilirubin, several vitamins, and reduced glutathione to maintain the levels of ROS in the interest of cellular homeostasis. This balance may, however, get disturbed in case of acute or chronic liver injury due to the accumulation of ROS. In the current manuscript, we aim to review the relevance of oxidative stress and its indicator of liver injury in chronic liver diseases such as alcoholic and non-alcoholic fatty liver diseases and hepatitis. Since reactive oxidation species may also lead to lipid peroxidation and promote ferroptosis, we have also evaluated their impact on epigenetic modifications, such as oxidative damage to histone proteins and DNA methylation, and the differential expression of genes related to cellular injury. We also want to highlight the potential of traditional herbal medicines as redox regulators for managing chronic liver diseases.

16.
Curr Pharm Des ; 29(42): 3368-3384, 2023.
Article En | MEDLINE | ID: mdl-38151849

The term "neurodegenerative disorders" refers to a group of illnesses in which deterioration of nerve structure and function is a prominent feature. Cognitive capacities such as memory and decision-making deteriorate as a result of neuronal damage. The primary difficulty that remains is safeguarding neurons since they do not proliferate or regenerate spontaneously and are therefore not substituted by the body after they have been damaged. Millions of individuals throughout the world suffer from neurodegenerative diseases. Various pathways lead to neurodegeneration, including endoplasmic reticulum stress, calcium ion overload, mitochondrial dysfunction, reactive oxygen species generation, and apoptosis. Although different treatments and therapies are available for neuroprotection after a brain injury or damage, the obstacles are inextricably connected. Several studies have revealed the pathogenic effects of hypothermia, different breathed gases, stem cell treatments, mitochondrial transplantation, multi-pharmacological therapy, and other therapies that have improved neurological recovery and survival outcomes after brain damage. The present review highlights the use of therapeutic approaches that can be targeted to develop and understand significant therapies for treating neurodegenerative diseases.


Brain Injuries , Neurodegenerative Diseases , Humans , Neuroprotection , Mitochondria/metabolism , Neurons/metabolism , Neurodegenerative Diseases/metabolism , Endoplasmic Reticulum Stress , Brain Injuries/metabolism , Oxidative Stress/physiology
17.
Mol Neurobiol ; 2023 Dec 21.
Article En | MEDLINE | ID: mdl-38127187

Misfolded and aggregated proteins build up in neurodegenerative illnesses, which causes neuronal dysfunction and ultimately neuronal death. In the last few years, there has been a significant upsurge in the level of interest towards the function of molecular chaperones in the control of misfolding and aggregation. The crucial molecular chaperones implicated in neurodegenerative illnesses are covered in this review article, along with a variety of their different methods of action. By aiding in protein folding, avoiding misfolding, and enabling protein breakdown, molecular chaperones serve critical roles in preserving protein homeostasis. By aiding in protein folding, avoiding misfolding, and enabling protein breakdown, molecular chaperones have integral roles in preserving regulation of protein balance. It has been demonstrated that aging, a significant risk factor for neurological disorders, affects how molecular chaperones function. The aggregation of misfolded proteins and the development of neurodegeneration may be facilitated by the aging-related reduction in chaperone activity. Molecular chaperones have also been linked to the pathophysiology of several instances of neuron withering illnesses, enumerating as Parkinson's disease, Huntington's disease, and Alzheimer's disease. Molecular chaperones have become potential therapy targets concerning with the prevention and therapeutic approach for brain disorders due to their crucial function in protein homeostasis and their connection to neurodegenerative illnesses. Protein homeostasis can be restored, and illness progression can be slowed down by methods that increase chaperone function or modify their expression. This review emphasizes the importance of molecular chaperones in the context of neuron withering disorders and their potential as therapeutic targets for brain disorders.

18.
Heliyon ; 9(11): e21425, 2023 Nov.
Article En | MEDLINE | ID: mdl-38027672

A nascent category of anticancer therapeutic drugs called antibody-drug conjugates (ADCs) relate selectivity of aimed therapy using chemotherapeutic medicines with high cytotoxic power. Progressive linker technology led to the advancement of more efficacious and safer treatments. It offers neoteric as well as encouraging therapeutic strategies for treating cancer. ADCs selectively administer a medication by targeting antigens which are abundantly articulated on the membrane surface of tumor cells. Tumor-specific antigens are differently expressed in breast and ovarian cancers and can be utilized to direct ADCs. Compared to conventional chemotherapeutic drugs, this approach enables optimal tumor targeting while minimizing systemic damage. A cleavable linker improves the ADCs because it allows the toxic payload to be distributed to nearby cells that do not express the target protein, operating on assorted tumors with dissimilar cell aggregation. Presently fifteen ADCs are being studied in breast and ovarian carcinoma preclinically, and assortment of few have already undergone promising early-phase clinical trial testing. Furthermore, Phase I and II studies are investigating a wide variety of ADCs, and preliminary findings are encouraging. An expanding sum of ADCs will probably become feasible therapeutic choices as solo agents or in conjunction with chemotherapeutic agents. This review accentuates the most recent preclinical findings, pharmacodynamics, and upcoming applications of ADCs in breast and ovarian carcinoma.

19.
Heliyon ; 9(11): e22052, 2023 Nov.
Article En | MEDLINE | ID: mdl-38027733

Background: Ischemic preconditioning (IPC) is the utmost capable design to achieve protection over ischemia-reperfusion injury (I/R), but this phenomenon gets attenuated during various pathological conditions like diabetes. Chrysin exhibits cardioprotection in various experiments however, its therapeutic potential on IPC-mediated cardioprotection via PI3K-Akt-eNOS pathway in streptozotocin (STZ) triggered diabetes-challenged rat heart is yet to be assessed. For that reason, the experiment has been planned to investigate chrysin's effect on the cardioprotective action of IPC involving the PI3K-Akt-eNOS cascade in rat hearts challenged to diabetes. Methods: The project was accomplished through means of absorbance studies for biochemical parameters, infarct size measurement (TTC stain) and coronary flow. Results: The findings of the present study revealed that STZ drastically augmented the serum glucose level and the chrysin significantly reversed the IPC-stimulated increased coronary flow, nitrite release, and reduced LDH (lactate dehydrogenase), CK-MB (creatine kinase) activities as well as infarct size in diabetes-induced rat heart. Furthermore, chrysin also reversed the IPC-induced reduction in oxidative stress in an isolated Langendorff's perfused diabetic rat heart. Moreover, four episodes of preconditioning by either PI3K or eNOS inhibitor in chrysin-pretreated diabetic rat hearts significantly abolished the protective effect of chrysin. Conclusion: Consequently, these observations suggested that chrysin increases the therapeutic efficiency of IPC in mitigating I/R injury via PI3K-Akt-eNOS signalling in diabetes-challenged rat hearts. Hence, chrysin could be a potential alternative option to IPC in diabetic rat hearts.

20.
Curr Med Chem ; 2023 Oct 26.
Article En | MEDLINE | ID: mdl-37921179

Neurological disorders are possibly the most prevalent and have been identified to occur among individuals with autism beyond chance. These disorders encompass a diverse range of consequences with neurological causes and have been regarded as a major threat to public mental health. There is no tried-and-true approach for completely protecting the nervous system. Therefore, plant-derived compounds have developed significantly nowadays. Coumestrol (CML) is a potent isoflavone phytoestrogen with a protective effect against neurological dysfunction and has been discovered to be structurally and functionally similar to estrogen. In recent years, more research has been undertaken on phytoestrogens. This research demonstrates the biological complexity of phytoestrogens, which consist of multiple chemical families and function in various ways. This review aimed to explore recent findings on the most significant pharmacological advantages of CML by emphasising neurological benefits. Numerous CML extraction strategies and their pharmacological effects on various neurological disorders, including PD, AD, HD, anxiety, and cognitive impairments, were also documented.

...